CS2405 Computer Graphics Lab - Computer Graphics Lab - Manual ... Implementation of Line, Circle and ellipse Attributes ... To write a program to draw a Line, Circle and ellipse Attributes .

  • Published on
    16-Mar-2018

  • View
    215

  • Download
    3

Transcript

S.SAKTHI, AP/IT CS2405 Computer Graphics Lab - Manual Bresenhams Line Drawing EX NO.1(A) Aim: To implement Bresenhams line drawing Algorithm for drawing lines. Functions used: Line() The function line() is used to draw a line from(x1,y1)to (x2,y2) Syntax: line (x1,y1,x2,y2) initgraph(). This function takes thee arguments and they are i).the video driver to be used (gd). ii).the graphics mode (gm). iii).the path name. Syntax: Initgraph(gd,gm,path) Algorithm: Step 1: Start Step 2: Get the values of the end points as(x1, y1) &(x2, y2) Step 3: Assign x=x1, y=y1; Step 4: Compute dx=x2-x1 Step 5: Compute dy=y2-y1 Step 6: Assign sx=x2-x1, sy=y2-y1 Step 7: If dy>dx then interchange the values of dx and dy and assign exch=1 Step 8: Compute p=2xdy-dx Step 9: Put a pixel on(x,y) Step 10: If exch=1, y=sy else x=x+sx Step 11: If p>0 and exch =1, x=x+sx else y=y+sy, p=p-2xdx Step 12: Compute p=p+2xdy Step 13: Do steps (9) t0 (12) for dx times Step 14: Stop S.SAKTHI, AP/IT Program: #include #include #include #include int signs(int m); void bres_line(int,int,int,int); void main() { int gd=DETECT,gm; int x1,x2,y1,y2; initgraph(&gd,&gm,""); cout>x1; cout>y1; cout>x2; cout>y2; bres_line(x1,y1,x2,y2); getch(); closegraph(); } void bres_line(int x1,int y1,int x2,int y2) { int x,y,sx,sy,p,temp,exch=0,i,dx,dy; x=x1; y=y1; dy=abs(y1-y2); dx=abs(x1-x2); sx=signs(x2-x1); sy=signs(y2-y1); if(dy>dx) { temp=dx; dx=dy; dy=temp; exch=1; } p=2*dy-dx; for(i=0;i S.SAKTHI, AP/IT y+=sy; else x+=sx; if(p>=0) { if(exch==1) x+=sx; else y+=sy;p=p-2*dx;} p=p+2*dy; } } int signs(int m) { if(m0) return(1); else return(0); } Input: Enter starting value of X-Axis----->100 Enter starting value of Y-Axis----->100 Enter ending value of X-Axis----->200 Enter ending value of Y-Axis----->200 Output: Result: Thus the program to draw line using Bresenhams line drawing Algorithm was executed successfully. Circle Drawing EX NO 1(B) S.SAKTHI, AP/IT Aim: To write a program to draw a circle using Bresenhams circle drawing Algorithm. Functions used: Circle() The function circle() is used to draw a circle using(x,y) as centre point. Syntax: circle (x,y,radius) initgraph(). This function takes thee arguments and they are i).the video driver to be used (gd). ii).the graphics mode (gm). iii).the path name. Syntax: Initgraph(gd,gm,path) Putpixel () The function putpixel() is used to place a pixel at particular coordinate Syntax: Putpixel(x,y,color) Algorithm: Step 1: Start Step 2: Get the center point as (xc,yc),get the radius as r. Step 3: Assign y=r,x=0 Step 4: Calculate p=3-2r Step 5: If p S.SAKTHI, AP/IT Step14: Put a pixel on (xc+y, yc-x, 15); Step 15: Put a pixel on (xc-y, yc+x, 15); Step 16: Put a pixel on (xc-y, yc-x, 15); Step 17: Stop. Program: #include #include #include #include void my_circle(int,int,int); void plot(int,int,int,int); void main() { int gd=DETECT,gm; int xc,yc,r; initgraph(&gd,&gm,""); cout>xc; cout>yc; cout>r; my_circle(xc,yc,r); getch(); closegraph(); } void my_circle(int xc,int yc,int r) { int x,y,p; p=3-2*r; x=0; y=r; while(x S.SAKTHI, AP/IT { putpixel(xc+x,yc+y,15); putpixel(xc+x,yc-y,15); putpixel(xc-x,yc+y,15); putpixel(xc-x,yc-y,15); putpixel(xc+y,yc+x,15); putpixel(xc+y,yc-x,15); putpixel(xc-y,yc+x,15); putpixel(xc-y,yc-x,15); } Input: Enter X-Axis----->:100 Enter Y-Axis----->:200 Enter radius----->: 40 Output: Result: Thus the program to draw circle using Bresenhams circle drawing Algorithm was executed successfully. Ellipse Drawing EX NO 1(C) Aim: To write a program to draw a ellipse using Bresenhams ellipse drawing Algorithm. Functions used: S.SAKTHI, AP/IT initgraph(). This function takes thee arguments and they are i).the video driver to be used (gd). ii).the graphics mode (gm). iii).the path name. Syntax: Initgraph(gd,gm,path) Putpixel () The function putpixel() is used to place a pixel at particular coordinate Syntax: Putpixel(x,y,color) Algorithm: Step 1: Start Step 2: Get the center point as(x1, y1) Step 3: Get the length of semi-major, semi-minor axes as r1 & r2 Step 4: Calculate t=pi/180 Step 5: Initialise i=0; Step 6: Compute d=i*t Step 7: Compute x=x1+y1*sin(d), y=y1+r2*cos(d). Step 8: Put a pixel on(x,y) Step 9: Increment I by 1 Step 10: Repeat steps(6) to (9) until i>y1; S.SAKTHI, AP/IT coutr1; coutr2; for(i=0;i S.SAKTHI, AP/IT Functions used: Circle() The function circle() is used to draw a circle using(x,y) as centre point. Syntax: circle (x,y,radius) initgraph(). This function takes thee arguments and they are i).the video driver to be used (gd). ii).the graphics mode (gm). iii).the path name. Syntax: Initgraph(gd,gm,path) Putpixel () The function putpixel() is used to place a pixel at particular coordinate Syntax: Putpixel(x,y,color) Algorithm: Step 1: Start Step 2: Get the center point as (xc,yc),get the radius as r. Step 3: Assign y=r,x=0 Step 4: Calculate p=3-2r Step 5: If p S.SAKTHI, AP/IT { int dx=abs(xa-xb),dy=abs(ya-yb); int p=2*dy-dx; int twoDy=2*dy,twoDyDx=2*(dy-dx); int x,y,xEnd; /* Determine which point to use as start,which as end */ if(xa>xb) { x=xb; y=yb; xEnd=xa; } else { x=xa; y=ya; xEnd=xb; } putpixel(x,y,15); while(x S.SAKTHI, AP/IT { y; p+=2*(x-y)+1; } circlePlotPoints(xCenter,yCenter,x,y); } } void circlePlotPoints(int xCenter,int yCenter,int x,int y) { putpixel(xCenter+x,yCenter+y,WHITE); putpixel(xCenter-x,yCenter+y,WHITE); putpixel(xCenter+x,yCenter-y,WHITE); putpixel(xCenter-x,yCenter-y,WHITE); putpixel(xCenter+y,yCenter+x,WHITE); putpixel(xCenter-y,yCenter+x,WHITE); putpixel(xCenter+y,yCenter-x,WHITE); putpixel(xCenter-y,yCenter-x,WHITE); }//Ellipse drawing void ellipsemidpoint(int xcenter,int ycenter,int rx,int ry) { int rx2=rx*rx; int ry2=ry*ry; int tworx2=2*rx2; int twory2=2*ry2; int p,x=0,y=ry,px=0; int py=tworx2*y; void ellipseplotpoints(int,int,int,int); ellipseplotpoints(xcenter,ycenter,x,y); p=ROUND(ry2-(rx2*ry)+(0.25*rx2)); while(px S.SAKTHI, AP/IT py-=tworx2; if(p>0) p+=rx2-py; else { x++; px+=twory2; p+=rx2-px+px; } ellipseplotpoints(xcenter,ycenter,x,y); } } void ellipseplotpoints(int xcenter,int ycenter,int x,int y) { putpixel(xcenter+x,ycenter+y,5); putpixel(xcenter-x,ycenter+y,5); putpixel(xcenter+x,ycenter-y,5); putpixel(xcenter-x,ycenter-y,5); } void main() { int ch,c; co: clrscr(); printf(\n\t\tBRESENHAM BDRAWINGS\n); printf(\n\t\t1-Line drawing); printf(\n\t\t2-Circle drawing); printf(\n\t\t3-Ellipse drawing); printf(\n\t\t4-Exit); printf(\nEnter your choice :); scanf(%d,&ch); int gdriver = DETECT, gmode; initgraph(&gdriver, &gmode, ); switch(ch) { case 1: int x1,y1,x2,y2; printf(Enter the starting co-ordinates: ); scanf(%d %d,&x1,&y1); printf(Enter the ending co-ordinates: ); scanf(%d %d,&x2,&y2); lineBres(x1,y1,x2,y2); getch(); printf(\n\n\n\n\n\n\n\n\nDo u continue(1-yes,0-no):); scanf(%d,&c); if (c==1) goto co; S.SAKTHI, AP/IT break; case 2: int xc1,yc1,r; printf(Enter the centre co-ordinates: ); scanf(%d %d,&xc1,&yc1); printf(Enter the radius: ); scanf(%d,&r); circleMidPoint(xc1,yc1,r); getch(); printf(\n\n\n\n\n\n\n\n\nDo u continue(1-yes,0-no):); scanf(%d,&c); goto co; break; case 3: int xc,yc,rx,ry; printf(Enter the value of xcenter and ycenter co-ordinates: ); scanf(%d %d,&xc,&yc); printf(Enter the radius of x and y: ); scanf(%d %d,&rx,&ry); ellipsemidpoint(xc,yc,rx,ry); getch(); printf(\n\n\n\n\n\n\n\n\nDo u continue(1-yes,0-no):); scanf(%d,&c); if (c==1) goto co; break; case 4: break; } } output Result: Thus the program to draw. Implementation of Line, Circle and ellipse Attributes was executed successfully. S.SAKTHI, AP/IT 2D TRANSFORMATION EX NO 3 Aim: To perform the 2D transformation such as translation, rotation, scaling, shearing, Reflection Line() The function line() is used to draw a line from(x1,y1)to (x2,y2) Syntax: line (x1,y1,x2,y2) initgraph(). This function takes thee arguments and they are i).the video driver to be used (gd). ii).the graphics mode (gm). iii).the path name. S.SAKTHI, AP/IT Syntax: Initgraph(gd,gm,path) Algorithm: Step1. Declare the variables xa,ya,xa1,ya1 of array type. Step2.Declare the variables gd,gm,n,i,op,tx,ty,xf,yf,rx,ry. Step3. Initialise the graphics function. Step4. Input the number of points. Step5. Input the value of co-ordinate according to number of points. Step6. Using switch statement selects the option to perform translation, rotation, scaling, reflection and shearing. Step7. Translation: a).input the translation vector b).add the translation vectors with the coordinates xa1[i]=xa[i]=tx, ya1[i]=ya[i]=ty, c).using the function line,display the object before and after translation. Step8. Rotation: a). input the rotation angle b). using formula theta=(theta*3.14)/180 c).input the value of reference point d). calculate new coordinate point using formula xa1[i]=xf+(xa[i]-xf)*cos(theta)-(ya[i]-yf)*sin(theta), ya1[i]=yf+(xa[i]-xf)*sin(theta)-(ya[i]-yf)*cos(theta), e). using the function line,display the object before and after rotation. Step9. Scaling: a).input the scaling factor and reference point b).calculate new coordinate point using formula xa1[i]=(xa[i]*sx+rx*(1-sx), ya1 [i] = (ya[i]*sy+ry*(1-sy) c). using the function line, display the object before and after scaling. Step10. Shearing: a).input the shearing value and reference point. b). input the shear direction x or y i).if direction x xa1[i]=xa[i]+shx*(ya[i]-yref) ii).otherwise ya1[i]=ya[i]+shy*(xa[i]-xref) iii). using the function line, display the object before and after shearing. Step11. Reflection: a).display the object before reflection using the function line b). display the object after reflection using the function line S.SAKTHI, AP/IT Step12. Stop. Program: #include #include #include #include #include void main() { int gd,gm,n,i,xa[10],ya[10],op,tx,ty,xa1[10],ya1[10],theta,xf,yf,rx,ry,sx,sy,shx,shy,xref,yref; char d; gd=DETECT; initgraph(&gd,&gm,""); coutn; for(i=0;i S.SAKTHI, AP/IT line(xa1[i],ya1[i],xa1[(i+1)%n],ya1[(i+1)%n]); } getch(); cleardevice(); break; case 2: couttheta; theta=(theta*3.14)/180; coutxf>>yf; for(i=0;i S.SAKTHI, AP/IT for(i=0;i>shy; coutxref>>yref; coutd; if(d=='x') { for(i=0;i S.SAKTHI, AP/IT cleardevice(); break; case 6: exit(0); break; } }while(op!=6); } Input & Output: enter the no of points:3 enter the coordinates 1:50 150 enter the coordinates 2:50 50 enter the coordinates 3:75 150 menu 1. translation 2. rotation 3. scaling 4.shearing 5.reflection 6.exit1 enter the translation vector:30 40 Before translation After Translation menu 1. translation 2. rotation 3. scaling 4.shearing 5.reflection 6.exit 2 enter the rotation angle:40 enter the reference points:100 100 before rotation after rotation S.SAKTHI, AP/IT menu 1. translation 2. rotation 3. scaling 4.shearing 5.reflection 6.exit 3 Enter the scaling factor: 3 4 Enter the reference points: 30 40 Before scaling after scaling S.SAKTHI, AP/IT menu 1. translation 2. rotation 3. scaling 4.shearing 5.reflection 6.exit 4 Enter the shear value: 3 4 Enter the reference point: 20 30 Enter the shear direction x or y: X Before shearing After shearing menu 1. translation 2. rotation 3. scaling 4.shearing 5.reflection 6.exit 5 Before reflection after reflection S.SAKTHI, AP/IT menu 1. translation 2. rotation 3. scaling 4.shearing 5.reflection 6.exit 6 Result: Thus the program for 2D transformation was executed successfully Composite 2D Transformations Exno(4) Aim: To perform the Composite 2D Transformations Line() The function line() is used to draw a line from(x1,y1)to (x2,y2) Syntax: line (x1,y1,x2,y2) initgraph(). This function takes thee arguments and they are i).the video driver to be used (gd). ii).the graphics mode (gm). iii).the path name. Syntax: Initgraph(gd,gm,path) Algorithm: Step1. Declare the variables xa,ya,xa1,ya1 of array type. Step2.Declare the variables gd,gm,n,i,op,tx,ty,xf,yf,rx,ry. S.SAKTHI, AP/IT Step3. Initialise the graphics function. Step4. Input the number of points. Step5. Input the value of co-ordinate according to number of points. Step6. Using switch statement selects the option to perform translation, rotation, scaling, reflection and shearing. Step7. a).input the translation vector b).add the translation vectors with the coordinates xa1[i]=xa[i]=tx, ya1[i]=ya[i]=ty, c).using the function line,display the object before and after translation. Step8. a). input the rotation angle b). using formula theta=(theta*3.14)/180 c).input the value of reference point d). calculate new coordinate point using formula xa1[i]=xf+(xa[i]-xf)*cos(theta)-(ya[i]-yf)*sin(theta), ya1[i]=yf+(xa[i]-xf)*sin(theta)-(ya[i]-yf)*cos(theta), e). using the function line,display the object before and after rotation. Step9. a).input the scaling factor and reference point b).calculate new coordinate point using formula xa1[i]=(xa[i]*sx+rx*(1-sx), ya1 [i] = (ya[i]*sy+ry*(1-sy) c). using the function line, display the object before and after scaling. Step10.: Composite 2D Transformations a).input the shearing value and reference point. b). input the shear direction x or y i).if direction x xa1[i]=xa[i]+shx*(ya[i]-yref) ii).otherwise ya1[i]=ya[i]+shy*(xa[i]-xref) iii). using the function line, display the object before and after shearing. Step11. a).display the object before reflection using the function line b). display the object after reflection using the function line Step12. Stop. Program S.SAKTHI, AP/IT #include #include #include #include #include void disp(int n,float c[][3]) { float maxx,maxy; int i; maxx=getmaxx(); maxy=getmaxy(); maxx=maxx/2; maxy=maxy/2; i=0; while(i S.SAKTHI, AP/IT } } void scaling(int n,float c[][3],float sx,float sy) { float b[10][3],a[10][3]; int i=0,j; for(i=0;i S.SAKTHI, AP/IT } do { clrscr(); cleardevice(); printf(\n\t\t\t * * * MENU * * *); printf(\n\t 1) TRANSLATION); printf(\n\t 2) SCALING ); }while(cho!=4); getch(); closegraph(); } OUTPUT: Before scaling after scaling Result: Thus the program for Composite 2D transformation was executed successfully S.SAKTHI, AP/IT Cohen-Sutherland Clipping& Windowing EXNO 5 Aim: To implement Cohen-Sutherland clipping& WindowingAlgorithm. Functions used: Line() The function line() is used to draw a line from(x1,y1)to (x2,y2) Syntax: line (x1,y1,x2,y2) initgraph(). This function takes thee arguments and they are i).the video driver to be used (gd). ii).the graphics mode (gm). iii).the path name. Syntax: Initgraph(gd,gm,path) Setcolor(). This function changes the drawing colour. Syntax: Setcolor(value of the color) Settextstyle(). The function settextstyle() is used to change the style of the text. S.SAKTHI, AP/IT Syntax: Settextstyle(font,direction,charsize) Where font is the constant value or the font filename, direction is the number either 0 or 1, which makes the output to display in horizontal, or in vertical direction, charsize is the character size or magnification factor and it varies from 1 to 10. Outtext(). This function display a text message on upper left of the screen Syntax: Outtext(message); Algorithm: Step 1. Create a class sulc with functions drawwindow, drawline, setcode, visibility and reset endpoint. Step 2. Using the function line set the parameters to draw window. Step 3. Using the function defined in class sulc, setcode is used to save the line inside the window and to the line outside the window. Step 4. Using the function visibility i).check the code to know the points inside or outside the window. ii).if the code value is zero the point is inside the window. Step 5. Using the function reset end point i). if the code value for the line is outside the window. ii).reset the endpoint to the boundary of the window. Step 6. Initialize the graphics functions Step 7. Declare the variables x1, x2, y1, y2 of array type. Step 8. Get the value of two endpoints x1, y1 and x2, y2 to draw the line. Step 9. Using the object c, display the window before clipping. Step 10. Using the function setcode, visibility display the clipped window only with lines inside the window class was displayed after clipping. Program: #include #include #include #include typedef struct coord { int x,y; char code[4]; }pt; S.SAKTHI, AP/IT class sulc { public: void drawwindow(); void drawline(pt p1,pt p2,int c1); pt setcode(pt p); int visibility(pt p1,pt p2); pt resetendpt(pt p1,pt p2); }; void sulc::drawwindow() { setcolor(WHITE); line(150,100,450,100); line(450,100,450,350); line(450,350,150,350); line(150,350,150,100); } void sulc::drawline(pt p1,pt p2,int c1) { setcolor(c1); line(p1.x,p1.y,p2.x,p2.y); } pt sulc::setcode(pt p) { pt ptemp; if(p.y350) ptemp.code[1]='1'; else ptemp.code[1]='0'; if(p.y>450) ptemp.code[2]='1'; else ptemp.code[2]='0'; if(p.y S.SAKTHI, AP/IT int i,flag=0; for(i=0;i S.SAKTHI, AP/IT temp.code[i]=p1.code[i]; if(temp.y=100) return(temp); } else return(p1); } void main() { int gd=DETECT,gm,v; sulc c1; pt p1,p2,ptemp; initgraph(&gd,&gm,""); int x1[10],y1[10],x2[10],y2[10]; cleardevice(); int i,n; settextstyle(4,0,4); outtext("cohen sutherland line clipping"); coutn; for(i=0;i>y1[i]; coutx2[i]>>y2[i]; } cleardevice(); settextstyle(0,0,3); outtext("before clipping"); c1.drawwindow(); for(i=0;i S.SAKTHI, AP/IT p1=c1.setcode(p1); p2=c1.setcode(p2); v=c1.visibility(p1,p2); switch(v) { case 0: c1.drawwindow(); c1.drawline(p1,p2,15); break; case 1: c1.drawwindow(); break; case 2: p1=c1.resetendpt(p1,p2); p2=c1.resetendpt(p2,p1); c1.drawwindow(); c1.drawline(p1,p2,15); break; } } getch(); closegraph(); } Input: Enter the no.of lines: 1 Enter end-point1(x1,y1):30 40 Enter end-point1(x2,y2):300 400 Output: Before clipping After clipping S.SAKTHI, AP/IT Result: Thus the program to implement Cohen-Sutherland clipping& Windowing is executed successfully Sutherland Hodgeman Polygon clipping Algorithm EX NO. (6) Aim: To implement Sutherland Hodgeman Polygon clipping Algorithm Functions used: Line() The function line() is used to draw a line from(x1,y1)to (x2,y2) Syntax: line (x1,y1,x2,y2) initgraph(). This function takes thee arguments and they are i).the video driver to be used (gd). ii).the graphics mode (gm). iii).the path name. Syntax: Initgraph(gd,gm,path) Setcolor(). This function changes the drawing colour. Syntax: Setcolor(value of the color) Settextstyle(). The function settextstyle() is used to change the style of the text. Syntax: Settextstyle(font,direction,charsize) S.SAKTHI, AP/IT Where font is the constant value or the font filename, direction is the number either 0 or 1, which makes the output to display in horizontal, or in vertical direction, charsize is the character size or magnification factor and it varies from 1 to 10. Outtext(). This function display a text message on upper left of the screen Syntax: Outtext(message); Algorithm: Step 1. Create a class sulc with functions drawwindow, drawline, setcode, visibility and reset endpoint. Step 2. Using the function line set the parameters to draw window. Step 3. Using the function defined in class sulc, setcode is used to save the line inside the window and to the line outside the window. Step 4. Using the function visibility i).check the code to know the points inside or outside the window. ii).if the code value is zero the point is inside the window. Step 5. Using the function reset end point i). if the code value for the line is outside the window. ii).reset the endpoint to the boundary of the window. Step 6. Initialize the graphics functions Step 7. Declare the variables x1, x2, y1, y2 of array type. Step 8. Get the value of two endpoints x1, y1 and x2, y2 to draw the line. Step 9. Using the object c, display the window before clipping. Step 10. Using the function setcode, visibility display the clipped window only with lines inside the window class was displayed after clipping. Program: #include #include #include #include #include #include int pixels[2][4]; float xn1,xn2,yn1,yn2,x3,y3,m; int xmin,ymin,xmax,ymax,x1,y1,x2,y2; int choice,ed[20],num; void su_co(int x1,int y1,int x2,int y2,int xmin,int ymin,int xmax,int ymax) { int i,j,f1; S.SAKTHI, AP/IT for(i=0;i S.SAKTHI, AP/IT { xn1=x1+(ymin-y1)/m; yn1=ymin; } if(pixels[0][2]==1) { yn1=y1+(xmax-x1)*m; xn1=xmax; } if(pixels[0][3]==1) { yn1=y1+(xmin-x1)*m; xn1=xmin; } if(pixels[1][0]==1) { xn2=x2+(ymax-y2)/m; yn2=ymax; } if(pixels[1][1]==1) { xn2=x2+(ymin-y2)/m; yn2=ymin; } if(pixels[1][2]==1) { yn2=y2+(xmax-x2)*m; xn2=xmax; } if(pixels[1][3]==1) { yn2=y2+(xmin-x2)*m; xn2=xmin; } line(320+xn1,240-yn1,320+xn2,240-yn2); break; } } void cohen() { clearviewport(); line(320+xmin,240-ymin,320+xmin,240-ymax); line(320+xmin,240-ymax,320+xmax,240-ymax); line(320+xmax,240-ymax,320+xmax,240-ymin); line(320+xmax,240-ymin,320+xmin,240-ymin); line(320+x1,240-y1,320+x2,240-y2); getch(); S.SAKTHI, AP/IT cleardevice(); line(320+xmin,240-ymin,320+xmin,240-ymax); line(320+xmin,240-ymax,320+xmax,240-ymax); line(320+xmax,240-ymax,320+xmax,240-ymin); line(320+xmax,240-ymin,320+xmin,240-ymin); su_co(x1,y1,x2,y2,xmin,ymin,xmax,ymax); getch(); } void main() { int gd=DETECT,gm,i,j; initgraph(&gd,&gm,..\\bgi); printf(\n\n\t\t\Enter the coordinate of the Clipping Window\"); printf(\n\n\t\t\Enter X(min),Y(min)\:=); scanf(%d%d,&xmin,&ymin); printf(\n\n\t\t\Enter X(max),Y(max)\:=); scanf(%d%d,&xmax,&ymax); printf(\n\n\t\tEnter the coordinates of the Line); printf(\n\n\t\t Enter X(1) & Y(1):); scanf(%d%d,&x1,&y1); printf(\n\n\t\t Enter X(2) & Y(2):); scanf(%d%d,&x2,&y2); clrscr(); cohen(); } Output: Result Sutherland Hodgeman Polygon clipping Algorithm is executed S.SAKTHI, AP/IT 3D- Transformation EXNO(7) Aim: To perform 3D transformations such as translation, rotation and scaling. Functions used: Line() The function line() is used to draw a line from(x1,y1)to (x2,y2) Syntax: line (x1,y1,x2,y2) initgraph(). This function takes thee arguments and they are i).the video driver to be used (gd). ii).the graphics mode (gm). iii).the path name. Syntax: Initgraph(gd,gm,path) Algorithm: Step 1. Create a class cube with function draw cube. Step 2. Use the function draw cube to draw a cube using eight points by means of functions line. Step 3. Declare the variables x1, y1, x2, y2, x3, y3, in array type which of data type int. Step 4.Declare the variables theta,op,ch,tx,ty,sx,sy,sz,lz+xy,zf,i,x,y,z. Step 5.Initialise graphics functions. Step 6.Input the first point in the cube. Step 7.Input the size of the edge. Step 8.Create an object to call the function. Step 9.Using switch operation select the operation to perform translation, rotation,scaling. Step 10.Translation a).input the translation vectortx,ty,tz. b).calculate points using formula x3[i]=x1[i]+tx. y3[i]=y1[i]+ty z3[i]=z1[i]+tz. x4[i]=x3[i]+z3[i]/2 y4[i]=y3[i]+z3[i]/2 S.SAKTHI, AP/IT c).using the function line, display the object before and after translation. Step11. Rotation: a). input the rotation angle b). using formula theta=(theta*3.14)/180 c).input the direction in x,y,z axis d). if the direction is along x axis, x3[i]=x1[i]. y3[i]=y1[i]*cos(theta)-z1[i]*sin(theta), y3[i]=y1[i]*sin(theta)-z1[i]*cos(theta), if the direction is along yaxis, y3[i]=y1[i]. z3[i]=z1[i]*cos(theta)-x1[i]*sin(theta), x3[i]=z1[i]*sin(theta)-x1[i]*cos(theta), if the direction is along z axis, z3[i]=z1[i]. x3[i]=x1[i]*cos(theta)-y1[i]*sin(theta), y3[i]=x1[i]*sin(theta)-y1[i]*cos(theta), e).calculate the points using the formula x4[i]=x3[i]+z3[i]/2 y4[i]=y3[i]+z3[i]/2 f). using the function line,display the object before and after rotation. Step12. Scaling: a).input the scaling factor and reference point b).calculate coordinate point using formula x3[i]=xf+(x1[i]*sx+xf*(1-sx), y3 [i] =yf+ (y1[i]*sy+yf*(1-sy) z3 [i] =zf+ (z1[i]*sz+zf*(1-sz) c). calculate the points using the formula x4[i]=x3[i]+z3[i]/2 y4[i]=y3[i]+z3[i]/2 d). using the function line, display the object before and after scaling. Step13. Stop. Program: #include #include #include #include #include class cube { public: void drawcube(int x1[],int y1[]) S.SAKTHI, AP/IT { int i; for(i=0;i S.SAKTHI, AP/IT } cube c; getch(); cleardevice(); do { cout S.SAKTHI, AP/IT { x3[i]=x1[i]; y3[i]=y1[i]*cos(theta)-z1[i]*sin(theta); z3[i]=y1[i]*sin(theta)+z1[i]*cos(theta); } } else if(op==2) { for(i=0;i S.SAKTHI, AP/IT coutxf>>yf>>zf; for(i=0;i S.SAKTHI, AP/IT Before translation After translation Result: Thus the program for 3D transformation was executed successfully. Composite 3D transformations EXno(8) S.SAKTHI, AP/IT Aim: To perform. Composite 3D transformations Functions used: Line() The function line() is used to draw a line from(x1,y1)to (x2,y2) Syntax: line (x1,y1,x2,y2) initgraph(). This function takes thee arguments and they are i).the video driver to be used (gd). ii).the graphics mode (gm). iii).the path name. Syntax: Initgraph(gd,gm,path) Algorithm: Step 1. Create a class cube with function draw cube. Step 2. Use the function draw cube to draw a cube using eight points by means of functions line. Step 3. Declare the variables x1, y1, x2, y2, x3, y3, in array type which of data type int. Step 4.Declare the variables theta,op,ch,tx,ty,sx,sy,sz,lz+xy,zf,i,x,y,z. Step 5.Initialise graphics functions. Step 6.Input the first point in the cube. Step 7.Input the size of the edge. Step 8.Create an object to call the function. Step 9.Using switch operation select the operation to perform translation, rotation,scaling. Step 10. a).input the translation vectortx,ty,tz. b).calculate points using formula x3[i]=x1[i]+tx. y3[i]=y1[i]+ty z3[i]=z1[i]+tz. x4[i]=x3[i]+z3[i]/2 y4[i]=y3[i]+z3[i]/2 c).using the function line, display the object before and after translation. Step11. a). input the rotation angle S.SAKTHI, AP/IT b). using formula theta=(theta*3.14)/180 c).input the direction in x,y,z axis d). if the direction is along x axis, x3[i]=x1[i]. y3[i]=y1[i]*cos(theta)-z1[i]*sin(theta), y3[i]=y1[i]*sin(theta)-z1[i]*cos(theta), if the direction is along yaxis, y3[i]=y1[i]. z3[i]=z1[i]*cos(theta)-x1[i]*sin(theta), x3[i]=z1[i]*sin(theta)-x1[i]*cos(theta), if the direction is along z axis, z3[i]=z1[i]. x3[i]=x1[i]*cos(theta)-y1[i]*sin(theta), y3[i]=x1[i]*sin(theta)-y1[i]*cos(theta), e).calculate the points using the formula x4[i]=x3[i]+z3[i]/2 y4[i]=y3[i]+z3[i]/2 f). using the function line,display the object before and after rotation. Step12. a).input the scaling factor and reference point b).calculate coordinate point using formula x3[i]=xf+(x1[i]*sx+xf*(1-sx), y3 [i] =yf+ (y1[i]*sy+yf*(1-sy) z3 [i] =zf+ (z1[i]*sz+zf*(1-sz) c). calculate the points using the formula x4[i]=x3[i]+z3[i]/2 y4[i]=y3[i]+z3[i]/2 d). using the function line, display the object before and after scaling. Step13. Stop. Program: #include #include #include S.SAKTHI, AP/IT #include #include #include #include int main(void) { int gdriver=DETECT,gmode; int xmax,ymax,tx,ty,tz,i,n,x[20],y[20],z[20],a[20],b[20],choice; initgraph(&gdriver,&gmode,h:\cplus); xmax=getmaxx(); ymax=getmaxy(); line(xmax/2,0,xmax/2,ymax/2); line(xmax/2,ymax/2,xmax,ymax/2); line(xmax/2,ymax/2,0,ymax); coutn; void draw(int x[],int y[],int z[],int n); coutchoice; switch(choice) { case 1: cout>y[i]>>z[i]; x[i]+=xmax/2; y[i]=ymax/2-y[i]; a[i]=x[i]-z[i]; b[i]=y[i]-z[i]; } for(i=0;i>ty>>tz; for(i=0;i S.SAKTHI, AP/IT { line(x[i],y[i],x[(i+1)%n],y[(i+1)%n]); line(a[i],b[i],x[(i+1)%n]-z[(i+1)%n],y[(i+1)%n]-z[(i+1)%n]); line(x[i],y[i],a[i],b[i]); } break; case 2: cout>z[i]; x[i]+=xmax/2; y[i]=ymax/2-y[i]; a[i]=x[i]-z[i]; b[i]=y[i]-z[i]; } for(i=0;i S.SAKTHI, AP/IT } case 3: break; } getch(); closegraph(); return 0; } Output: Enter the choice:1 Enter the translation vector: 5,10,25 Before translation After translation Result: Thus the program for Composite 3D transformations as executed successfully. Drawing three dimensional objects and Scenes EXNO(9) Aim: To write program to visualize the Drawing three dimensional objects and Scenes S.SAKTHI, AP/IT Functions used: Line() The function line() is used to draw a line from(x1,y1)to (x2,y2) Syntax: line (x1,y1,x2,y2) initgraph(). This function takes thee arguments and they are i).the video driver to be used (gd). ii).the graphics mode (gm). iii).the path name. Syntax: Initgraph(gd,gm,path) Algorithm: Step 1. Create a class parallel. Step 2. Create a constructor parallel i).initialize graphics Step 3. Create a function initialize i).draw the x,y,z axis Step 4. Create a function projection i).get the reference angle alpha as j. ii).assign the value of k as 45. iii).compute the following fi=(3.14/180)*k; a1=(3.14/180)*j; z=pz1[1]; i=z/tan(a1); i1=floor(i*cos(fi)); i2=floor(i*sin(fi)); iv).Calculate px3[1]=px1[1]+i1; py3[1]=py1[1]+i2; px3[2]=px1[2]+i1; py3[2]=py1[2]+i2; px3[3]=px1[3]+i1; py3[3]=py1[3]+i2; px3[4]=px1[4]+i1; py3[4]=py1[4]+i2; v).compute the following z=pz1[5]; i=z/tan(a1); i1=floor(i*cos(fi)); i2=floor(i*sin(fi)); vi). calculate S.SAKTHI, AP/IT px3[5]=px1[5]+i1; py3[5]=py1[5]+i2; px3[6]=px1[6]+i1; py3[6]=py1[6]+i2; px3[7]=px1[7]+i1; py3[7]=py1[7]+i2; px3[8]=px1[8]+i1; py3[8]=py1[8]+i2; vii).compute the values to screen coordinate value. viii).join the coordinate using line function ix).display the projected object. Program #include #include #include #include #include #include class parallel { public: int a,k; int gd,gm; int px[8],py[8],pz[8],px1[8],py1[8],pz1[8],px3[8],py3[8]; parallel(); void initialize(); void drawobj(); void proj(int); }; parallel::parallel() { gd=DETECT; initgraph(&gd,&gm,""); } void parallel::initialize() { px1[1]=100,py1[1]=100,pz1[1]=0; px1[2]=200,py1[2]=100,pz1[2]=0; px1[3]=200,py1[3]=200,pz1[3]=0; px1[4]=100,py1[4]=200,pz1[4]=0; px1[5]=100,py1[5]=100,pz1[5]=100; px1[6]=200,py1[6]=100,pz1[6]=100; px1[7]=200,py1[7]=200,pz1[7]=100; px1[8]=100,py1[8]=200,pz1[8]=100; } void parallel::drawobj() { S.SAKTHI, AP/IT setcolor(WHITE); line(px1[1],py1[1],px1[2],py1[2]); line(px1[2],py1[2],px1[3],py1[3]); line(px1[3],py1[3],px1[4],py1[4]); line(px1[4],py1[4],px1[8]+50,py1[8]+50); line(px1[8]+50,py1[8]+50,px1[5]+50,py1[5]+50); line(px1[5]+50,py1[5]+50,px1[6]+50,py1[6]+50); line(px1[6]+50,py1[6]+50,px1[7]+50,py1[7]+50); line(px1[7]+50,py1[7]+50,px1[8]+50,py1[8]+50); line(px1[1],py1[1],px1[5]+50,py1[5]+50); line(px1[2],py1[2],px1[6]+50,py1[6]+50); line(px1[3],py1[3],px1[7]+50,py1[7]+50); line(px1[4],py1[4],px1[1],py1[1]); getch(); } void parallel::proj(int j) { cleardevice(); int z,xp,yp; int dx,dy; float a1,fi,i,i1,i2; k=45; fi=(3.14/180)*k; a1=(3.14/180)*j; z=pz1[1]; i=z/tan(a1); i1=floor(i*cos(fi)); i2=floor(i*sin(fi)); px3[1]=px1[1]+i1; py3[1]=py1[1]+i2; px3[2]=px1[2]+i1; py3[2]=py1[2]+i2; px3[3]=px1[3]+i1; py3[3]=py1[3]+i2; px3[4]=px1[4]+i1; py3[4]=py1[4]+i2; z=pz1[5]; i=z/tan(a1); i1=floor(i*cos(fi)); i2=floor(i*sin(fi)); px3[5]=px1[5]+i1; py3[5]=py1[5]+i2; px3[6]=px1[6]+i1; py3[6]=py1[6]+i2; px3[7]=px1[7]+i1; py3[7]=py1[7]+i2; px3[8]=px1[8]+i1; S.SAKTHI, AP/IT py3[8]=py1[8]+i2; cout S.SAKTHI, AP/IT Result: Thus the program to visualize the Drawing three dimensional objects and Scenes was executed successfully. Generating Fractal images EX NO(10) Aim: S.SAKTHI, AP/IT To write program to draw the Generating Fractal images Functions used: Line() The function line() is used to draw a line from(x1,y1)to (x2,y2) Syntax: line (x1,y1,x2,y2) initgraph(). This function takes thee arguments and they are i).the video driver to be used (gd). ii).the graphics mode (gm). iii).the path name. Syntax: Initgraph(gd,gm,path) Algorithm: Step1:Pres() i).Initialise graphics. Step 2: Initialize() i).Draw x,y,z axis ii).Number all axis with regular interval 1 to 8 step 3:Draw-obj i). Get the value of each p6 of 3D object ii).Convert the value to screen coordinate values iii).Join the coordinate using the function. Step 4:Proj() i).Get the reference point in z-axis as j ii).Get the position of the view plane as k iii).Assign the values for Zprp=j and Zrp=k iv).Compute z=pz1[1]; u=(zprp-zvp)/(zprp-z); v).Calculate px3[1]=px1[1]*u; py3[1]=py1[1]*u; px3[2]=px1[2]*u; py3[2]=py1[2]*u; px3[3]=px1[3]*u; py3[3]=py1[3]*u; px3[4]=px1[4]*u; py3[4]=py1[4]*u; vi).Compute z=pz1[5]; S.SAKTHI, AP/IT u=(zprp-zvp)/(zprp-z); vii).Calculate px3[5]=px1[5]*u; py3[5]=py1[5]*u; px3[6]=px1[6]*u; py3[6]=py1[6]*u; px3[7]=px1[7]*u; py3[7]=py1[7]*u; px3[8]=px1[8]*u; py3[8]=py1[8]*u; viii).Compute the values to screen coordinate value. ix).Join the coordinate using line function. x).Display the projected object. Program: #include. #include #include #include #include #include class pres { public: int a,k; int gd,gm; int px[8],py[8],pz[8],px1[8],py1[8],pz3[8],px3[8],py3[8],pz1[8]; pres(); void initialize(); void drawobj(); void proj(int,int); }; pres::pres() { gd=DETECT; initgraph(&gd,&gm,""); } void pres::initialize() { px1[1]=200,py1[1]=200,pz1[1]=100; px1[2]=300,py1[2]=200,pz1[2]=100; px1[3]=300,py1[3]=300,pz1[3]=100; px1[4]=200,py1[4]=300,pz1[4]=100; px1[5]=200,py1[5]=200,pz1[5]=200; px1[6]=300,py1[6]=200,pz1[6]=200; px1[7]=300,py1[7]=300,pz1[7]=200; S.SAKTHI, AP/IT px1[8]=200,py1[8]=300,pz1[8]=200; } void pres::drawobj() { setcolor(WHITE); line(px1[1],py1[1],px1[2],py1[2]); line(px1[2],py1[2],px1[3],py1[3]); line(px1[3],py1[3],px1[4],py1[4]); line(px1[4],py1[4],px1[8]+50,py1[8]+50); line(px1[8]+50,py1[8]+50,px1[5]+50,py1[5]+50); line(px1[5]+50,py1[5]+50,px1[6]+50,py1[6]+50); line(px1[6]+50,py1[6]+50,px1[7]+50,py1[7]+50); line(px1[7]+50,py1[7]+50,px1[8]+50,py1[8]+50); line(px1[1],py1[1],px1[5]+50,py1[5]+50); line(px1[2],py1[2],px1[6]+50,py1[6]+50); line(px1[3],py1[3],px1[7]+50,py1[7]+50); line(px1[4],py1[4],px1[1],py1[1]); getch(); } void pres::proj(int j,int k) { cleardevice(); int z,xp,yp; float zprp,zvp,u; zprp=j;zvp=k; z=pz1[1]; u=(zprp-zvp)/(zprp-z); z=pz1[1]; px3[1]=px1[1]*u; py3[1]=py1[1]*u; px3[2]=px1[2]*u; py3[2]=py1[2]*u; px3[3]=px1[3]*u; py3[3]=py1[3]*u; px3[4]=px1[4]*u; py3[4]=py1[4]*u; z=pz1[5]; u=(zprp-zvp)/(zprp-z); px3[5]=px1[5]*u; py3[5]=py1[5]*u; px3[6]=px1[6]*u; py3[6]=py1[6]*u; px3[7]=px1[7]*u; py3[7]=py1[7]*u; px3[8]=px1[8]*u; py3[8]=py1[8]*u; cleardevice(); S.SAKTHI, AP/IT cout

Recommended

View more >