Hexadecimal. Overview Hexadecimal (hex) ~ base 16 number system Use 0 through 9 and... A = 10 B = 11 C = 12 D = 13 E = 14 F = 15.

  • Published on
    05-Jan-2016

  • View
    218

  • Download
    2

Transcript

  • Hexadecimal

  • OverviewHexadecimal (hex) ~ base 16 number systemUse 0 through 9 and ...

    A = 10B = 11C = 12D = 13E = 14F = 15

  • Decimal Example2657= 2000 + 600 + 50 + 7= 2*1000 + 6*100 + 5*10 + 7*1= 2*103 + 6*102 + 5*101 + 7*100

  • Binary Example10112= 1*23 + 0*22 + 1*21 + 1*20= 1*8 + 0*4 + 1*2 + 1*1= 8 + 2 + 1 = 1110

  • Hexadecimal ExampleA4F16= 10*162 + 4*161 + 15*160= 10*256 + 4*16 + 15*1= 2560 + 64 + 15 = 263910

  • Hexadecimal Decimal6116 = ?

    F2316 = ?

    Now convert the above to binary...

  • Decimal HexadecimalGiven the powers of 16: 1, 16, 256, 4096, etc.Find the power that is just bigger than your numberGo down to the next smallest power of 16Divide your number by that powerRound the result downMake note of the result for that power of 16Multiply the rounded down result by its corresponding power of 16and then subtract that from your original numberUsing the result from Step 7, repeat Steps 1-7 until you reach 0

  • So why do we use hex?Binary is annoying to readHexadecimal is slightly easierBinary Hexadecimal is painlessExample: 11101010100101012 = ?

  • Binary HexadecimalSplit the binary number up into 4-bit sectionsDetermine the hexadecimal value of each sectionBamyoure done

    Example: 111010010111010101000101

  • Hexadecimal BinaryDetermine the 4-bit binary value for each hexadecimal digitBamyoure done

Recommended

View more >